Math 335 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover through §7.3

- 1. Assume $a_n \ge 0$ for all $n \ge 1$. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges. Give an example of a sequence $a_n \ge 0$ such that $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges and $\sum_{1}^{\infty} a_n$ diverges.
- 2. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. (Assume $a_n \geq 0$.)
- 3. Let x_n be a convergent sequence and let $c = \lim_{n \to \infty} x_n$. Let p be a fixed positive integer and let $a_n = x_n x_{n+p}$. Prove that $\sum a_n$ converges and

$$\sum_{1}^{\infty} a_n = x_1 + x_2 + \dots x_p - pc.$$

- 4. Suppose $a_n > 0$, $b_n > 0$ for all n > 1. Suppose that $\sum_{1}^{\infty} b_n$ converges and that $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for $n \geq N$. Prove that $\sum_{1}^{\infty} a_n$ converges.
- 5. Let S be the set of all positive integers whose decimal representation does not contain 2. Prove that $\sum_{n \in S} \frac{1}{n}$ converges.
- 6. Suppose that $a_n \ge 0$ and $\sum_{n=0}^{\infty} a_n$ diverges; and suppose that $\sum_{n=0}^{\infty} a_n x^n$ converges for |x| < 1. Prove

$$\lim_{x \to 1^{-}} \sum_{n=0}^{\infty} a_n x^n = +\infty.$$

7. Suppose f_n is a sequence of continuous functions that converges uniformly on a set W. Let p_n be a sequence of points in W that converges to a point $p \in W$. Prove that $\lim_{n\to\infty} f_n(p_n) = f(p)$.

Sample Problems 2

8. Let be a sequence of continuous functions in I = [a, b] and suppose $f_n(x) \ge f_{n+1}(x) \ge 0$ for all $x \in I$. Suppose $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in I$ (point-wise convergence to 0). Is the convergence uniform? Give a proof or a counterexample.

- 9. Prove that $\sum_{n=0}^{\infty} \frac{x}{(1+|x|)^n}$ converges for all x, but the convergence is not uniform.
- 10. Suppose $a_n > b_n > 0$, $a_n > a_{n+1}$ and $\lim_{n \to \infty} a_n = 0$. Does $\sum_{1}^{\infty} (-1)^n b_n$ converge? Give a proof or a counterexample.
- 11. Prove that $\sum_{n=1}^{\infty} \frac{\cos nx}{n}$ converges uniformly for $x \in [a,b], 0 < a < b < 2\pi$, but does not converge absolutely for any x.
- 12. Prove that $\sum_{1}^{\infty} (-1)^n \frac{\sin nx}{n}$ converges uniformly on $\{|x| < 1\}$ to a continuous function.
- 13. Let f_n be a sequence of functions defined on the open interval (a,b). Suppose $\lim_{x\to a^+} f_n(x) = a_n$ for all n. Suppose $\sum_{1}^{\infty} f_n$ converges uniformly on (a,b) to a function f. Prove that $\sum_{1}^{\infty} a_n$ converges and $\lim_{x\to a^+} f(x) = \sum_{1}^{\infty} a_n$. Do not assume f_n is continuous on (a,b).
- 14. Suppose the series $\sum_{1}^{\infty} a_n$ converges. Prove that $\sum_{1}^{\infty} \frac{a_n}{n^x}$ converges for $x \geq 0$. Let $f(x) = \sum_{1}^{\infty} \frac{a_n}{n^x}$. Prove that $\lim_{x \to 0^+} f(x) = \sum_{1}^{\infty} a_n$.
- 15. Let $p_j(t) = e^{-t} \frac{t^j}{j!}$.
 - (a) Suppose $\sum_{0}^{\infty} a_n$ converges. Let $s_n = \sum_{0}^{n} a_j$. Prove that

$$\lim_{t \to \infty} \sum_{0}^{\infty} s_j p_j(t) = \sum_{0}^{\infty} a_n.$$

- (b) Compute this limit in the case that $a_n = x^n$ for those x for which the limit exists (even in the case that $\sum x^n$ does not converge). This limit is called the Borel regularized value. What does this give for the *Borel regularized value* of $1 2 + 4 8 + 16 \pm \dots$?
- 16. You will need to know the definitions of the following terms and statements of the following theorems.

Sample Problems 3

- (a) Convergence and divergence of a series
- (b) Comparison test
- (c) Integral test
- (d) Cauchy condensation test
- (e) Root test and ratio test
- (f) Absolute and conditional convergence of a series
- (g) Dirichlet's test
- (h) Abel's theorem
- (i) Uniform convergence of a sequence or series of functions
- (j) Weierstrass M-test
- (k) Continuity of a uniform limit of continuous functions
- (l) Integration and differentiation of a sequence or series
- (m) Power series
- (n) Radius of convergence of a power series
- (o) Integration and differentiation of a power series
- 17. There may be homework problems or example problems from the text on the midterm.